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HYDROMAGNETIC THERMAL INSTABILITY
OF HETROGENEOUS INCOMPRESSIBLE
VISCOUS SHEAR FLOW

Shivdeep Singh Patial, Arun Kumar Tomer, Gurpreet Kaur

Abstract--In this paper, we discuss the effect of a uniform magnetic field applied in the direction of streaming on a steady, thermally, density
stratified shear flow of a viscous, incompressible, perfect electrically conducting and heat conducting fluid confined between two non-
deformable free horizontal boundaries which are maintained at constant temperatures. We also discuss the necessary condition of instability
for R, >0 and R; <0 and obtained growth rate of unstable modes for R,>0 and R3 <0. Further, we have found out that growth rate of unstable
modes for large wave numbers and Q<<1 and finally, we derived the sufficient condition of stability for non-oscillatory modes and also find

bounds of n, for unstable modes

Keywords: H, K, n, p, T, u,p, Kis magnetic field, wave number, complex constant, pressure, temperature, velocity, density, thermal

conductivity of fluid

1.1 Introduction Many researches such as Miles
(1961), Banerjee, Dube, Gupta(1975) etc. have
studied the effect of stratification on the non-
viscous and incompressible flows. Attempts have
also been made to investigation the effects of
viscosity and thermal conduction on the stability of
stratified flows. Rayleigh (1916) in a fundamental
research, showed that what decides the stability or
otherwise of a fluid layer heated from below is the
numerical value of the non-dimensional
parameter, ,called Rayleigh number, where g
denotes the acceleration due to gravity, d the depth
of the layer ,the uniform adverse temperature
gradient and are the coefficient of volume
expansion , thermal conductivity and Kinematic
viscosity , respectively. Rayleigh further showed
that instability must set in when R exceeds a
certain critical value R. , a stationary pattern of
motions must done to prevail or the principle of
exchange of stabilities is valid. Banerjee (1972) has
investigated the stability of a continuously
stratified layer of viscous, incompressible fluid,
statically confined between two horizontal
boundaries of different but uniform temperature.
The fluid is being heated or cooled from below.

One of the Principle results established in the
paper is a ‘Circle Theorem’ which units the
complex amplification rate of an arbitrary
oscillatory mode inside a circle. Sharma and
Sharma (1992) studied the thermal instability in

Maxwellian visco-elastic fluid in porous medium.
They discussed the thermal convection in a layer of
Maxvellian visco-elastic fluid heated from below in
porous medium an analyzed the effects of uniform
rotation and uniform magnetic field for stationary
convection. It was found that Maxwellian fluid
behaves like a Newtonian fluid. Further, the
critical Rayleigh number was found to increase
with the increase in magnetic field and rotation.

Juarez and Busse (1995) investigated the stability of
spatially periodic solutions for steady and
oscillatory two-dimensional convection in a fluid-
saturated porous medium. They analyzed the unit
where viscous effects are dominant and Darcy’s
Law can be applied. Galerkin Method solutions
that appear in non-linear convection at Rayleigh
number up to 20 times the critical value. The
stability boundaries for arbitrary, infinitesimal
perturbation where obtained. It was also found
that at a given Rayleigh number close to the critical
values. The stability of this state with respect to
infinitesimal perturbations of any wave number
was discussed and the resulting temporal
dynamics in the resonance of the stable regions
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was briefly analyzed and used to discuss the
stability of density stratified flow through a porous
medium. The important results obtained by them
include a relation between two and three
dimensional disturbances, the stabilizing character
of porous media with high Darey’s resistance,
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bounds on the complex wave velocity of unstable
modes and a number of sufficient conditions for
the stability of these systems. Bansal, Jaimala and
Agrawal (1999) studied the shear flow instability of
an incompressible visco-elastic fluid in porous
medium in the presence of a weak magnetic field.
They established the sufficient condition for
stability and confirm the stabilizing role of
magnetic field and fluid viscosity and a
destabilizing character of medium permeability,
velocity shear and top-heavy density distribution.
In this present chapter, we have studied the effect
of a uniform magnetic field applied in the effect of
a uniform magnetic field applied in the direction of
streaming on a steady, thermally, density stratified
shear flow of a viscous, incompressible, perfect
electrically conducting and heat conducting fluid
confined between two non-deformable free
horizontal boundaries which are maintained at
constant temperatures.

1.2 Formulation of the Problem:

For an incompressible, viscous, heterogeneous,
heat conducting fluid of infinite electrical
conductivity, the equations of
magnetohydrodynamics with the initial state is
therefore one in which the velocity, the magnetic
field, temperature, density and pressure at any
point in the fluid region are given by

uj =[U(y),0,0]
H; =[H,0,0

j =[H,0,0] 0
T=Ty +By

P =polf(y)-aBy]

Pressure =p
Where B is the uniform temperature gradient,
which is maintained, pg is the density at the lower
boundary and ais the co-efficient of volume
expansion of the fluid.

Let the initial state be slightly perturbed so
that the perturbed state are given by
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u=(U+u,v,0)

H=(H+h,,hy,0)

T=T+0
. 5o )
p=polf(y)+—+a(To-T+6)
Po
and
|[p=p+0p

Where (u, v,0), (hy, hy ,0),0,8p and 8p are

respectively the perturbations in the velocity field,
magnetic field, temperature, pressure and density.
Now we analyzing the disturbances into normal
modes, we seek solutions whose dependence on x
,y and t is given by

F0x,y,0) =f(y) expli(kx +ot)] @)
where K is the wave number of the disturbance
and cis a constant, which is in general complex.
Hence we get

(U-n)(D? —a2)v+i2(D2 ~a%)?2v—(D%U)v

= Q(D? -a? +iRa0+ Rg —
Q( )(U—n) 2 3W0-n)
4)
and
Ry(D? -a®)0—ia(U-n)o=v ()
H2
where Y :dy, R].:Li :He—z
Ud 4rpgU
p=1p, RZ:Q&E, o= _ Ny
d u? d
2
a=kKd, p=-H" R, = 94°(0F) 0=p0

poUd’ * 2

Where d is the distance between the plates.

The boundary conditions are given by
v=0=0atY =0andY =1

an 2 (For
D“v=0atY =0andY =1

boundaries) (6)

Thus for a givena,P,Rq,R5,R3andQ, equations

free

(4) and (5) together with the boundary conditions
(6) present an Eigen value problem for n and the
system is stable , neutral or unstable according as
the imaginary part of n , namely ni is negative ,
zero or positive.

Further,
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(i) For non-adverse temperature Where
gradient, >0 and so R2>0;
(ii) For adverse temperature gradient ,f <0 Q= DDV'Z + a2|v|2} >0
and so Rx<0;
(iii) For stable density stratification , Df<0 And 2|2 2Iv 12 L a4 h2 {10)
Q, = ‘D v‘ +2a|Dv|” +a” V" |>0
everywhere and so Rs<0
(iv) For unstable density stratification, Df>0 now
and so Rs>0. * , *
[vU(D?v)dy =~ U|Dv|“dy — | (DU )v(Dv )y

1.3 ANECESSARY CONDITION OF and

INSTABILITY FOR R;>0 AND R3<0 2
Takir}g tche complex conjugajce of gquation ®) —Q f vD?2 jdy +a20Q [ | | dy
multiplying throughout by 6, integrating over the ( n)
range of Y and using the boundary conditions (6), *
we get :QJ (Uan)dy_QJ' (I?LLJJ)V(I)DZV) dy

* * - —-N
_le[|De|2 +a2|9|2:|dy+iaj(u —nj|e|2dy =[vedy
Thus, equation (9) becomes
P
Or ~JUQudy - [(DU) v Dvdy +njQydy +i—J Qzdy
) ) UQ1 ) d
. 2 -n
—R1j¢1dy+|aj[U—n]|9| dy = [vedy 7) X
(DU)vD %

Now multiplying equation (4) throughout by |V|2

V (the complex conjugate of v), integrating ~Ral (U-n) dy=0
over the range of Y, using the boundary conditions 11)

(6) and putting for [vOdy from equation (7), we
Taking the imaginary part of this equation, we get

etvUnDzavd+ sza vd P 2 2
get [V(U-n)(D2 —a?)vdy+ = v(D? ~a)?vdy _%qudymimldngﬂpzv\ +a?Dy] }dy

02 2, ‘(N2 .2) Vv
[(D?U)|v|“dy ij(D a )(U_n)dy +aP]Qdy +n;Q) Q1 _dy

* U-n
+iR2a[—R1]¢1dy+iaj(U—n)|6|2dy+R3jidy Q, & | | ) )
(U-n) >[5 dy+RyRaf¢1dy +Ra n;[|6]dy
2a |U n|
2
or | |
* 9 = —niR3J > dySO
[vUD?Vdy —a?]Uv|“dy +n[Qdy+i— ] Q,dy JU—n|
, : (12)
| (D 2 U)v| 2 dy-QfvD 2 [ULjdy Where we have used that
—-Nn *
? . 2 lmI(DU)V(DV)dyS%IQldy,
2Qj—dy+iR1R2aj¢1dy+Rzazj(U—n)|6| dy
|mj(DU)VDV qJ Q dy,
M 4o U-nf 2 g
3.[( )
And g =max|DU|

©) Inequality (12) can be written as



a__ @ P il Io2u? +a2Dvi?
[laP——-—"""—1Q dy+—j{D v| +a“|Dv }dy
2a Za|U—n|2 T ‘ ‘ >

+RyRa] dydy+n; ]| 14—2 - Ru+R a0

2
Rl
—— dy<0 (13)
U=n|
From inequality (13), we that for n;>0 ie for
unstable modes for R:>0, Ri<0, the necessary
condition of instability is given by

aP—i—LZ<O (14)
2a 2alU —n|

At least at one point in the interval [0,1]. Inequality
(14) can be written as

(UYS —nr)2 +ni2 <

aQ
ZP(aZ - aj
2p

> % and 0<Yg <1, which shows that

(15)

For a2

the complex wave velocity of unstable modes lie
Inside the circle given by (15) . Further, from (14)
the wave number range which may be unstable is
given by

a2<i 1+ Q

2P |U—n|2

(16)

Again from inequality (13), we find that under the
condition

R Lz >0 (17)
28 29)U—n|
Everywhere in the flow region, njmust be

negative, which means that the wave number
range given by

a

25909, Q > (18)
will be a stable wave number range.

In the absence of magnetic field ie. (Q=0),
inequality (13) reduces to

q P lIn2ul? o 221mu2
j[aP—Z—a}QlderngD v‘ +a“|Dv| }dy
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2
+R1Raf ¢dy+n; [| Q, +R,a%[6|* ~R3 LZ
[U—n|
(19)
Therefore, for Rs<0, R2 >0 and n; > 0, the inequality

dy <0

(43) gives that (a2P—%q) should be negative at

least at one point in the interval [0,1]. Thus, the
wave number range which may be unstable is
given by
a2 <4 20)

2P
Further, from inequality (19), we also conclude that

under the condition (azP - % qj >0, everywhere

in the flow region, nj <0. Thus the wave number
range
2.0
a®z_ (1)
will be stable wave number range.

Now if we compare (21) with (16), then we
find the magnetic field decreases with the range of
stable wave numbers, showing that its
destabilizing character. We further conclude that
the wave number range given by

i<a2< g 1+ Q (22)

2P 2P |U—n|2

May be unstable and if unstable modes exist then
they will lie inside the circle (15). This is another
wave number range which may contain unstable
modes, is entirely due to the presence of the
magnetic field and in this sense the magnetic field
has a destabilizing character.

1.4 GROWTH RATE OF UNSTABLE

MODES FOR R,>0 AND R3<0

Inequality (13) can be written as
1+L2_ap_ i — nin
28 29)u—n| |U=n|

Qqdy

2
+n;R3[ il 5 dy—EJ|:‘D2V‘2+a2|DV|2:|dy
u-n" @

2
> R1R af ¢y dy + Ra?n; [|6]“dy (23)
From inequality (24), we find that the presence of

viscous term decreases the upper bound of the
growth rate and thus the viscosity has a stabilizing



role. Further, Q occurs in the denominator and
with its increase the value of the term,

_ %P
Q
1+
u-n|*

Decreases and in this sense the magnetic field has a
destabilizing effect.

1.5 GROWTH RATE OF UNSTABLE
MODES FOR LARGE WAVE NUMBERS
AND Q<<1

For weak magnetic field (Q<<1) and for large wave

numbers, the term QDZ(ULJ can be neglected

in comparison to Qaz( UV j in equation (4) and

in that case equation (9) becomes
*

[vUD2vdy —a?| U|v|2dy+ nf Q,dy

+'—IQ2dy [(D? U)|V| dy-[(R3-a Q) || - dy

+iRyR,a[ dydy + Rpa2[ (U - n)|9|2dy =0 (25
Taking the imaginary part of equation (25), we get

q 2
j{z— n; —aP}|DV| dy

() B

ju-nf*
P 212 2
—;j ‘D v‘ +a®|Dv|” |dy = RyRaf ¢;dy

+Ra?n;f|6|dy (26)
Now for R2>0, Rs<0 and nj > 0 (unstable modes),
from inequality (26), we have
|:i -nj— ap:l M >0

2 <7ju-n

must necessarily hold for an arbitrary unstable
mode i.e.

an; < (a-2a%) 27)

21+ ﬁ—)aQ Rs

a?|u-nl’
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Inequality (27) gives the rate of growth of unstable
modes for the case when we applied the weak
magnetic field i.e Q<<1 and the wave number a is
large. In this case we find the stabilizing role of
magnetic field and viscosity.

1.6 SUFFICIENT CONDITION OF
STABILITY FOR NON-OSCILLATORY
MODES

In the subsequent analysis we wish to investigate a
sufficient condition of stability for non-oscillatory
modes, when the viscosity of the fluid is small.
Under this approximation, we can neglect the term
PD*Vin comparison to the other terms (Since V is
a perturbation quantity and we assume that the
perturbations are arbitrary small).Further, for non-
oscillatory modes, n, =0and so n =in;only. Thus

for non-oscillatory modes and for P <<1,
equations (4) and (5) become

(U—ini)(D2 —a2>\/—2iaP (D2 —az)v—ia3Pv

~(p?u)v-q(p2-a?} Y —iR,a0

(U-in;)

and

Rl(D2 —azb—ia(U—ini)ezv (29)
Now using the transformations

V=(U=-injF and 0=(U+in;)p (30)

In equation (28) and (29), we get

(U —ini)(Dz —azl(u —in; )F]—ZiaP(D2 —aZI(U—ini ]

—~ia®P[(U—in; )F]

—(DZUI(U—ini )F]—Q(D2 —az):—iRza[(UHni Y]

—R3F=0 (31)
and
Rl(D2 ~a? I(U +in; Jo]-ia(U —in; (U +in; ]
=(U-in;F
(32)
The boundary conditions are given by
F=0=¢ aY=0 and Y=1
and D?F=0 atY=0 and Y=1 (for free
boundary) (33)

Now taking the complex conjugate of equation
(32), multiplying throughout by ¢ , integrating over
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the range of Y and using the boundary conditions Q= DDF'Z +a2|F|2J > Oand
(33), we get
* _ 2 21,12

RJ4(D? —az){(U—ini)ﬂdynaj(uz 2ol oy N e &)

. Taking the real part of equation (37), we get
=[(U+in;)Fody j(u2 —niz)Qody—zapnij|DF|2dy+ P(DU)] Qqdy

—a%Pn |Ff*dy - Qj Qodly
or
—le(U—ini)[|D¢|2 +a2|¢|2}dy—le(DU)(D¢)¢dy “R4R,an; [ dody + R1R 5 (DU)[ dgdy
2 2
L, N —R2a2j<U2+ni2)¢| dy+R3f|H“dy>0

+iaf (U? +ni*)|"dy = [(U+in; )Fedy  (34) or

Now equation (31) can be written as fle N P(DU)—Qbody+ RyR, (DU)[ dody
D|(U-in; 2DF|-a2(U-in; 2F 2002142 2y — 2
~Rga®[UZ||"dy + Ra]|F{"dy - n;*[Qody

2iaP .
_WD[ DF] Z'aP(DZU)F —R,a2n;2[|¢|*dy—2aPn; [|DF|*dy
+ia P(U—lni)F—Q( —aZ)F —a3Pnij|F|2dy—RlR2anij¢0dy20
~iRya(U+in; ))—R3F=0 (39)
(35) Now for R2>0 and Rs<0, from inequality (39), we
* find that under the condition
Multiplying (35) by throughout F and integrating DU<0 and UxP (DU)-Q <0
over the range of Y and using the boundary (40)

conditions (33) and putting for I(U in, )F ody Everywhere in the flow region, njcannot be

From equation (34),we get greater than or equal to zero, consequently n;<0 is

* 5 ) , 2 the only possibility under the condition (40).Thus,
) FD[(U_ini) DF}jy—a I(U_ini) |F| dy the sufficient conditions of stability for non-

* oscillatory modes are given by
o e A LR U

—2iaP[———D|(U—in; ) DF gy - 2iaP[(D“U|F <0

|an( . (U—in;) y —2iaP[ (DU ||F|“dy nd ) a1
Q > U max + P(DU)
+ia Pj —in; XF| dy-QJ F( a2>:dy Further, for R2>0 and Rs>0, inequality (39) can be

written as

[[U?+ P(DU)—Q]|DF|2dy+

—iRza{—le(U—ini [|D¢| +a2|¢|2}dy}

T 2 2
R1J(DU)D ¢)D¢dy+'af(uz+”i2)|¢| dy—R3[[F|"dy =0 j{ (U +P(DU)-Q+—2 H|F| dy +R;R , (DU)[ dody
(36)
For linear velocity profile, D?U=0 => DU=constant, “R,a IU2|¢| dy—n; N)Ody_ R Zazn.2“¢|2 dy
i i

and therefore equation (36) becomes ) )
: —2aPn; [ [DF|“dy—a>Pn; [|F{“dy -~ R1R pan; [ ¢dy > 0

[(U=in; PQody + 2ianm D[(U —in; )ZDF]dy
—in;

(42)
- 'aSPJ - ”H)Fl dy — Q[ Qqdy Now from (42), we find that under the conditions
* DU <0
—iR;R,a] (U ~in; Jhody — iR{R ,a(DU)[ (Do) ddy ) Rs
~Raa? U7 42 oy + R FEdy =0 d Vet POU) =@+ 5 <0
(37) The system cannot be unstable with respect to non-
Where oscillatory modes. In other words, from (43),

We can say that for non-oscillatory modes, the
system is stable only for the wave number given by



al >+ : Rs ]
Q- U2max—P(DU)|
Where DU <0 and Q- U?max —P(DU) >0

Thus, we conclude that in the case R2>0 and Rs<0,
the system is stable for all wave number while in
the case of R2>0 and Rs>0, the system is stable
only for the wave number range given by (44).The
stabilizing character of the magnetic field and
viscosity can also be seen from (44).

(44)

1.7 Bounds of n; For Unstable Modes
Finally, we investigates the bounds of n,for
unstable modes, we assume that the viscosity of
fluid is small and applied the weak magnetic field.
Under these approximation, equations (4) and (5)
becomes

(U-n)(D? —az)v+iPa3v—(D2U)v+a2Q(ﬁ)
_iRZaG—R{ﬁJ:O (45)
and

—ia(U—n)@:v (46)

Eliminating 0 between equations (45) and (46), we
get

B 2 .2 043y [~2 2 \
(U n)(D a )\/+|Pa v (D U)\/+a Q(U—nj
+(R2—R3{ﬁj=0 (47)

or

(U-n)?D2v-a?(U-n)’v+iPa®(U-n)v
—(DZUXu—n)er(aZQJrR2 —R3)\/=O

[((U—nr)2 —niz)—Zini(U—nr)}Dzv
—az[((U—nr)2 —niz)—Zini(U—nr)}/
+iPa3[(U—nr)—ini]v—(DZU)[(U—nr)—ini]v
+(a2Q+R2 —R3>\/:O

or

(48)
Multiplying equation (48) throughout

by [((U -ny )2 - “i2 )+ 2in;(U—-n, )]V, integrating
and using the boundary
conditions lv -D%v = Oaty = Oandy = 1J , we get

li—l+1l3—-l4+15=0 (49)
Where |1, |2, |3, I4andl sare define in equation
(48)
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Now equating the real part of both sides of
equation (49), using the fact that an; < % and for

I=jF(y)vD2vdy, where F(y) is a real valued

continuous of y having continuous derivatives at
least up to second order

Rel :%j(DZF)V|2dy—j'F|DV|2dy, we have after a
little calculation
_I[((U—nr)2 —niz)2 +4ni2(U—nr)2}

—niz(a2Q+R2 —R3)j|v|2dy+

j{(u - nr)ZKG(DU)Z + (DZUXU - nr)+%qa2P +a’Q+R,— R3ﬂ

+ni2(2(DU)2 +(D2UXU—nr)+%qa2PJ|V|2dy20

(50)
Now from inequality (50), it is clear that for an
unstable modes exist if the expression

[G(DU)Z +(D2UXU —nr)+%qa2P+a2Q+R2 —Rg,}

is negative, everywhere in the flow region, then the
relation (50) cannot be satisfied. Therefore, a
necessary condition for the existence of unstable
modes is that the expression

{G(DU)Z +(D2UXU—n,)+%qa2P+a2Q+R2 —R3}
(51)
Is positive

at least at one point in the flow domain.

Now for D?U > 0 everywhere in the flow domain
then from inequality (51), we have

6(DU)2 +%qa2P+a2Q+R2 -Rj3

N < Upax +max 5
DU
(52)

And for D?U <0 everywhere in the flow domain
then from inequality (51), we have

6(DU)% + ~qa®P+a2Q+R, — R4
Ny > Upijn —Max 2

Py

(53)



Thus for D?U > Oeverywhere in flow domain, n,

is bounded above and for D2U >0 everywhere in
flow domain, n,is bounded below.
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