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Abstract--In this paper, we discuss the effect of a uniform magnetic field applied in the direction of streaming on a steady, thermally, density 
stratified shear flow of a viscous, incompressible, perfect electrically conducting and heat conducting fluid confined between two non-
deformable free horizontal boundaries which are maintained at constant temperatures. We also discuss the necessary condition of instability 
for R2 >0 and R3 <0 and obtained growth rate of unstable modes for R2>0 and R3 <0. Further, we have found out that growth rate of unstable 
modes for large wave numbers and Q<<1 and finally, we derived the sufficient condition of stability for non-oscillatory modes and also find 
bounds of nr for unstable modes 
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1.1 Introduction Many researches such as Miles 

(1961), Banerjee, Dube, Gupta(1975) etc. have 

studied the effect of stratification on the non-

viscous and incompressible flows. Attempts have 

also been made to investigation the effects of 

viscosity and thermal conduction on the stability of 

stratified flows. Rayleigh (1916) in a fundamental 

research, showed that what decides the stability or 

otherwise of a fluid layer heated from below is the 

numerical value of the non-dimensional 

parameter, ,called Rayleigh number, where g 

denotes the acceleration due to gravity, d the depth 

of the layer ,the uniform adverse temperature 

gradient and are the coefficient of volume 

expansion , thermal conductivity and Kinematic 

viscosity , respectively. Rayleigh further showed 

that instability must set in when R exceeds a 

certain critical value Rc , a stationary pattern of 

motions must done to prevail or the principle of  

exchange of stabilities is valid. Banerjee (1972) has 

investigated the stability of a continuously 

stratified layer of viscous, incompressible fluid, 

statically confined between two horizontal 

boundaries of different but uniform temperature. 

The fluid is being heated or cooled from below.  
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One of the Principle results established in the 

paper is a ‘Circle Theorem’ which units the 

complex amplification rate of an arbitrary 

oscillatory mode inside a circle. Sharma and 

Sharma (1992) studied the thermal instability in  

Maxwellian visco-elastic fluid in porous medium. 

They discussed the thermal convection in a layer of 

Maxvellian visco-elastic fluid heated from below in 

porous medium an analyzed the effects of uniform 

rotation and uniform magnetic field for stationary 

convection. It was found that Maxwellian fluid 

behaves like a Newtonian fluid. Further, the 

critical Rayleigh number was found to increase 

with the increase in magnetic field and rotation. 

Juarez and Busse (1995) investigated the stability of 

spatially periodic solutions for steady and 

oscillatory two-dimensional convection in a fluid-

saturated porous medium. They analyzed the unit 

where viscous effects are dominant and Darcy’s 

Law can be applied. Galerkin Method solutions 

that appear in non-linear convection at Rayleigh 

number up to 20 times the critical value. The 

stability boundaries for arbitrary, infinitesimal 

perturbation where obtained. It was also found 

that at a given Rayleigh number close to the critical 

values. The stability of this state with respect to 

infinitesimal perturbations of any wave number 

was discussed and the resulting temporal 

dynamics in the resonance of the stable regions 

was briefly analyzed and used to discuss the 

stability of density stratified flow through a porous 

medium. The important results obtained by them 

include a relation between two and three 

dimensional disturbances, the stabilizing character 

of porous media with high Darey’s resistance, 



INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 3, ISSUE 6, JUNE-2012         2 
ISSN 2229-5518 

 
 

bounds on the complex wave velocity of unstable 

modes and a number of sufficient conditions for 

the stability of these systems. Bansal, Jaimala and 

Agrawal (1999) studied the shear flow instability of 

an incompressible visco-elastic fluid in porous 

medium in the presence of a weak magnetic field. 

They established the sufficient condition for 

stability and confirm the stabilizing role of 

magnetic field and fluid viscosity and a 

destabilizing character of medium permeability, 

velocity shear and top-heavy density distribution. 

In this present chapter, we have studied the effect 

of a uniform magnetic field applied in the effect of 

a uniform magnetic field applied in the direction of 

streaming on a steady, thermally, density stratified 

shear flow of a viscous, incompressible, perfect 

electrically conducting and heat conducting fluid 
confined between two non-deformable free 

horizontal boundaries which are maintained at 

constant temperatures. 

 

  1.2 Formulation of the Problem: 
For an incompressible, viscous, heterogeneous, 

heat conducting fluid of infinite electrical 

conductivity, the equations of 

magnetohydrodynamics with the initial state is 

therefore one in which the velocity, the magnetic 

field, temperature, density and pressure at any 

point in the fluid region are given by 
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Pressure = p 

Where   is the uniform temperature gradient, 

which is maintained, 0  is the density at the lower 

boundary and  is the co-efficient of volume 

expansion of the fluid. 

 Let the initial state be slightly perturbed so 

that the perturbed state are given by  
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Where p,),0,h,h(),0,v,u( yx   and are 

respectively the perturbations in the velocity field, 

magnetic field, temperature, pressure and density.  

Now we analyzing the disturbances into normal 

modes, we seek solutions whose dependence on x 

,y and t is given by  

 )tKx(iexp)y(f)t,y,x(f    (3) 

where K is the wave number of the disturbance 

and  is a constant, which is in general complex. 

Hence we get 
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Where d is the distance between the plates. 

The boundary conditions are given by 


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boundaries)               (6) 

Thus for a given andQR,R,R,P,a 321 , equations 

(4) and (5) together with the boundary conditions 

(6) present an Eigen value problem for n and the 

system is stable , neutral or unstable according as 

the imaginary part of n , namely ni is negative , 

zero or positive. 

Further, 
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(i) For non-adverse temperature 

gradient, >0 and so    R2>0 ; 

(ii) For adverse temperature gradient , <0 

and so R2<0 ; 

(iii) For stable density stratification , Df<0 

everywhere and so R3<0 

(iv) For unstable density stratification, Df>0 

and so R3>0. 

1.3 A NECESSARY CONDITION OF  
      INSTABILITY FOR R2>0 AND R3<0 
Taking the complex conjugate of equation (5) 

multiplying throughout by  , integrating over the 

range of Y and using the boundary conditions (6), 

we get 
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Where   0
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Now multiplying equation (4) throughout by 
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Where 
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Thus, equation (9) becomes 
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Taking the imaginary part of this equation, we get  
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Where we have used that  
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And  DU.maxq   

Inequality (12) can be written as  
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From inequality (13), we that for in >0 i.e for 

unstable modes for R2>0, R3<0, the necessary 

condition of instability is given by 
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At least at one point in the interval [0,1]. Inequality 

(14) can be written as 
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and 1Y0 S  , which shows that 

the complex wave velocity of unstable modes lie 

Inside the circle given by (15) . Further, from (14) 

the wave number range which may be unstable is 

given by  
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Again from inequality (13), we find that under the 

condition 
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Everywhere in the flow region, in must be 

negative, which means that the wave number 

range given by 
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will be a stable wave number range. 

In the absence of magnetic field ie. (Q=0), 

inequality (13) reduces to 
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Therefore, for R3<0, R2 >0 and 0n i  , the inequality 

(43) gives that )q
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Pa( 2   should be negative at 

least at one point in the interval [0,1]. Thus, the 

wave number range which may be unstable is 

given by   
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Further, from inequality (19), we also conclude that 
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will be stable wave number range. 

 Now if we compare (21) with (16), then we 

find the magnetic field decreases with the range of 

stable wave numbers, showing that its 

destabilizing character. We further conclude that 

the wave number range given by 
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May be unstable and if unstable modes exist then 

they will lie inside the circle (15). This is another 

wave number range which may contain unstable 

modes, is entirely due to the presence of the 

magnetic field and in this sense the magnetic field 

has a destabilizing character. 

 

1.4 GROWTH RATE OF UNSTABLE 
MODES FOR R2>0 AND R3<0 
Inequality (13) can be written as 
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From inequality (24), we find that the presence of 

viscous term decreases the upper bound of the 

growth rate and thus the viscosity has a stabilizing 
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role. Further, Q occurs in the denominator and 

with its increase the value of the term, 
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Decreases and in this sense the magnetic field has a 

destabilizing effect. 

 

 

1.5 GROWTH RATE OF UNSTABLE 
MODES FOR LARGE WAVE NUMBERS 
AND Q<<1 
For weak magnetic field (Q<<1) and for large wave 
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Taking the imaginary part of equation (25), we get 
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Now for R2>0, R3<0 and 0n i  (unstable modes), 

from inequality (26), we have  
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Inequality (27) gives the rate of growth of unstable 

modes for the case when we applied the weak 

magnetic field i.e Q<<1 and the wave number a is 

large. In this case we find the stabilizing role of 

magnetic field and viscosity. 

 

1.6 SUFFICIENT CONDITION OF    
STABILITY FOR NON-OSCILLATORY   
MODES 
In the subsequent analysis we wish to investigate a 

sufficient condition of stability for non-oscillatory 

modes, when the viscosity of the fluid is small. 

Under this approximation, we can neglect the term 

VPD4 in comparison to the other terms (Since V is 

a perturbation quantity and we assume that the 

perturbations are arbitrary small).Further, for non-

oscillatory modes, 0n r  and so iinn  only. Thus 
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3 












               (28) 

and  

    vinUiaaDR i
22

1    (29) 

Now using the transformations  

 FinUV i    and     iinU  (30) 

In equation (28) and (29), we get  

 

       

  FinUPia

FinUaDiaP2FinUaD)inU(

i
3

i
22

i
22

i





 

         i2
22

i
2 inUaiRFaDQFinUUD

 
 

0FR3       (31) 

and 

        
 FinU

inUinUiainUaDR

i

iii
22

1




 

     (32) 

The boundary conditions are given by 

 0F
       

0Y  at   and  1Y   

 and 0FD2   0atY   and  1Y   (for free 

boundary)    (33) 

Now taking the complex conjugate of equation 

(32), multiplying throughout by  , integrating over 
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the range of Y and using the boundary conditions 

(33), we get  

    







 dy)nU(iadyinU)aD(R

22
i

2
*

i
22

1

   dyFinU
*

i

  

or      

  




  dy)D)(DU(RdyaD)inU(R

*

1
222

i1

    dyFinUdy)nU(ia
*

i
22

i
2  (34) 

Now equation (31) can be written as  

    

 
    

   
  0FRinUaiR

F aDQF inUPia

F UDiaP2DFinUD
inU

iaP2

FinUaDFinUD

3i2

22
i

3

22
i

i

2
i

22
i












   

   (35) 

Multiplying (35) by throughout 
*

F  and integrating 

over the range of Y and using the boundary 

conditions (33) and putting for    dyFinU
*

i
 

From equation (34),we get  

  

       dyFinUadyDFinUDF
22

i
22

i

*

 

 

 
     


 dyF UDiaP2dyDFinUD

inU

F
iaP2

222
i

i

*

   
 







 



 

  

dyaDinURaiR

FdyaDFQdyFinUPia

222
i12

22
*

2
i

3

     0dyFRdy nUiadyD ) (DU)(DR
2

3
22

i
2

*

1

      (36) 

For linear velocity profile, D2U=0 => DU=constant, 

and therefore equation (36) becomes 

 
 

  

 

    

 

  




dy)D()DU(aRiRdyinUaRiR

dyQQdyFinUPia

dyDFinUD
iU

F
iaP2dyQinU

*

210i21

0
2

i
3

2
i

i

*

0
2

i

     0dyFRdynUaR
2

3
22

i
22

2   

     (37) 

Where  

0FaDFQ
222

0 




  and 

0aD
222

0 




     (38) 

Taking the real part of equation (37), we get  

 
 

 

dyQQdyFPna

dyQ)DU(PdyDFaPn2dyQnU

0
2

i
3

0
2

i0
2

i
2

   

  

0dyFRdynUaR

dy)DU(RRdyanRR

2
3

22
i

22
2

0210i21
 

or 

  
 

  

 

dyQndyFRdyUaR

dy)DU(RRdyQQ)DU(PU

0
2

i
2

3
222

2

0210
2

  

  

 

0dynaRRdyFPna

dyDFaPn2dynaR

0i21
2

i
3

2
i

22
i

2
2

  

            (39) 

Now for R2>0 and R3<0, from inequality (39), we 

find that under the condition 

 DU<0    and    U2+P (DU)-Q <0  

                   (40) 

Everywhere in the flow region, in cannot be 

greater than or equal to zero, consequently in <0 is 

the only possibility under the condition (40).Thus, 

the sufficient conditions of stability for non-

oscillatory modes are given by 

and
















)DU(PUQ

0DU

max
2

    

(41) 

Further, for R2>0 and R3>0, inequality (39) can be 

written as  

  

   

 






















 

0dyanRRdyFPnadyDFaPn2

dynaRdyndyUaR

dy)DU(RRdyF
a

R
Q)DU(PUa

dyDF]Q)DU(PU[

0i21
2

i
32

i

22
i

2
20

2
i

222
2

021
2

2

322

22

      

               (42) 

Now from (42), we find that under the conditions 

 0DU   

and 0
a

R
Q)DU(PU

2

3
max

2   (43) 

The system cannot be unstable with respect to non-

oscillatory modes. In other words, from (43), 

We can say that for non-oscillatory modes, the 

system is stable only for the wave number given by 
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 )DU(PUQ

R
a

max
2

32


   (44) 

Where 0DU   and 0)DU(PUQ max
2   

Thus, we conclude that in the case R2>0 and R3<0, 

the system is stable for all wave number while in 

the case of R2>0  and   R3>0 , the system is stable 

only for the wave number range given by (44).The 

stabilizing character of the magnetic field and 

viscosity can also be seen from (44). 

 

1.7 Bounds of nr For Unstable Modes 
Finally, we investigates the bounds of rn for 

unstable modes, we assume that the viscosity of  

fluid is small and applied the weak magnetic field. 

Under these approximation, equations (4) and (5) 

becomes 













nU

v
Qav)UD(viPav)aD)(nU( 22322   

0
nU

v
RaiR 32 










    (45) 

and  

  vnUia       (46) 

Eliminating   between equations (45) and (46), we 

get  

     











nU

v
QavUDviPavaDnU 22322

 

  0
nU

v
RR 32 










     (47) 

or 

     

     0vRRQavnUUD

vnUiPavnUavDnU

32
22

32222




 

or 

     
     vnUin2nnUa

vDnUin2nnU

ri
2

i
2

r
2

2
ri

2
i

2
r





 

       

  0vRRQa

vinnU UDvinnUiPa

32
2

ir
2

ir
3





         (48) 

Multiplying equation (48) throughout 

by      *ri
2

i
2

r vnUin2nnU  , integrating 

and using the boundary 

conditions  1andy0aty0vDv 2   , we get 

0IIIII 54321    (49) 

Where 54321 ,,, andIIIII are define in equation 

(48) 

Now equating the real part of both sides of 

equation (49), using the fact that 
2

q
an i  and for 

vdyDv)y(FI 2
*

 , where F(y) is a real valued 

continuous of y having continuous derivatives at 

least up to second order  

   dyDvFdyvFD
2

1
IRe

222 , we have after a 

little calculation 

     









2
r

2
i

22
i

2
r nUn4nnU

   dyvRRQan
2

32
22

i

 
     
















 32

22
r

222
r RRQaPqa

2

1
nUUD)DU(6nU

     0dyvPqa
2

1
nUUDDU2n

22
r

222
i 








  

           (50) 

Now from inequality (50), it is clear that for an 

unstable modes exist if the expression 

     







 32

22
r

22
RRQaPqa

2

1
nUUDDU6

is negative, everywhere in the flow region, then the 

relation (50) cannot be satisfied. Therefore, a 

necessary condition for the existence of unstable 

modes is that the expression 

     







 32

22
r

22
RRQaPqa

2

1
nUUDDU6

            (51) 

 

Is positive          

 

 at least at one point in the flow domain. 

Now for 0UD2  everywhere in the flow domain 

then from inequality (51), we have 

 





















UD

RRQaPqa
2

1
)DU(6

maxUn
2

32
222

maxr

         (52) 

And for 0UD2   everywhere in the flow domain 

then from inequality (51), we have 

 





















UD

RRQaPqa
2

1
)DU(6

maxUn
2

32
222

minr

         (53) 
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Thus for 0UD2  everywhere in flow domain, rn  

is bounded above and for 0UD2   everywhere in 

flow domain, rn is bounded below. 
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